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TAE calculation of ITER hot alpha critical beta using GEM code

Gyrokinetic core ions and hot alphas
Drift-fluid electrons
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Recent CEMM publications

"Low-noise particle algorithms for extended MHD closure,”
D.Barnes, J.Cheng, S.Parker, Phys. Plasmas 15 055702 (2008)

1

"Particle-in-cell simulation with Vlasov ions and drift kinetic electrons,’
Y.Chen, S.Parker, Phys. Plasmas 16 052305 (2009)

"Gyrokinetic delta-f particle simulation of the TAE,"
J.Lang,Y.Chen, S.Parker, G.Fu, Phys. Plasmas 16 052305 (2009)

Expect current/future work (Jianhua Cheng's Ph.D. thesis) will result in two
additional publications. One on the second order implicit algorithm
and one on reconnection with fully kinetic ions.



CEMM Proposed work

1. Develop drift kinetic electron model for closure of hybrid model.
- Test model on slab tearing mode problem.

2. Implement kinetic MHD model in NIMROD code.

3. Simulate classical tearing mode in toroidal geometry with GEM
and compare with M3D two-fluid (drift ordering).
Verification of M3D two-fluid model. In collaboration
with L. Sugiama.

4. Initialize NIMROD with 6E and 8B from GEM electromagnetic
turbulence simulations to see if tearing parity perturbations
zonal fields can seed NTMs. In collaboration with S. Kruger.



Motivations

e In certain problems, such as Tokamak edge ETG and weak guide field (or no
guide field) magnetic reconnection, the gyro-kinetic orderings are not valid.
Therefore the current gyro-kinetic model should be extended.

e Also, for GEM turbulence code on small devices like NSTX, the timestep
constraint i1s (2, At < 0.2.

e [f electrons and ions are treated as fluid and full-kinetic particles respectively,
this simple hybrid model could include the kinetic ion physics and capture
MHD physics in a natural way. Meanwhile, realistic electron ion mass ratio
could be preserved. It will also serve as a good check for the validity of
gyro-kinetic model in the edge.

e We are using the GEM code as a test bed for the model and algorithm. To

include kinetic electron effects, drift-kinetic and gyro-kinetic electrons could
be added.



Lorentz ion and fluid electron model

e [.orentz force ions:
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e [sothermal fluid electrons as a simple test:

0P, = ~vyon. 1,

d’UZ' q
(

[ am working on drift-kinetic and will add gyrokinetic electrons.

e Ampere’s law:
vV X B = pe (nju; — neue)

e Faraday’s law 5
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Generalized Ohm’s law

e Starting from the electron momentum equation:

a (& (&
en.(EE+u. x B)=en.mn 3 —<7 -1, —m, <%;L>
where IT, = [ fom.vvdv.
e Substitute in Ampere’s law 3 = e(nu; — neu,) = i v XB , we could
rewrite the above equation as
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e Taking time derivative of Ampere’s law
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The first term on the left hand side comes from ion momentum equation
on;u;

the electron inertial term could be written as

O(neuwe)  me Me
me = —mi(em(EjLuZxB)—v-Hl)Jrﬁvx(v><E)

e Dropping terms with m,./m;, we arrive at the generalized Ohm’s law
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Implicit 0f algorithm

e Given an ion distribution function f; = fio + df;, utilizing the usual 0 f
method, the weight equation is

d dln fi
D =

dt dt

e For p; scale instabilities k&, p;, ~ 1,3 ~ 0.01, the compressional wave fre-
quency o = 10, therefore (4;A¢ < 0.01 is needed. To get rid of the fast
frequency, we employ an implicit scheme.

e A first-order scheme has been developed. Here we come up with a second-

order scheme with an adjustable centering parameter and improved the field
solver.

Yang Chen, Scott E. Parker, Phys. Plasmas 16, 052305 (2009)



Second order implicit scheme

e Particle push
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v < T (1) v+
,Un+1 —v" q n n n n+1 n+1 n+1
A :E((l—e)(E +0" x B")+ 6 (E" + 0" x B")
,wn—l—l —w" q ; ; ; .
~ :Tio((l—e)(E-v)+9(E+1-v+1))
e Faraday’s law
5Bn+1 o 5Bn

_ _ n n-+1
A7 =—[(1-0) vy xE"+60 sy xE"|

e Ohm’s law:

¢ . ) 1
(ep + 1) B + 8 G x (7 x B = —6§ x By — 07" x 0B" + —(7 x B"™) x By

o€ Ho
1 1
+—(V X By) x 0B" + — (7 x 6B"™) x 6B""!
Ho Ho
(& 5 (&
G IND o 5Bt 1991 & 5B — AT v ot

Ho Ho



Ion current

e First half push cycle

v =v" + (1 —0)At L(E" + " x B")
m
" =x"+ (1 —0)At v"
w*=w"+ (1 —0)At i(E”’v”)
i0

e Dependence of 857 on E" 1!
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where this equation follows as the marker distribution is Maxwellian.

e For accuracy issues, we iterate on the differences between 9 ]”H and J'
while solving Ohm’s law to obtain E™*.



e Once we have E"" § B""! is advanced according to the Faraday’s law.

5Bn+1 — §B"
At

= —[(1-0) v xE"+0 7 xE"]

e With E"™ and § B"™ | we could proceed to complete the second half push
cycle
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Field solver

e Zcro-order B field
BO = eyB()y + ezBOz-

e In the Ohm’s law,

e M A
e E””Jrg—(ﬁJr@Atn)v x (7 ><E”+1)+6’ﬁ—t(v XV x B x By+ -
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the third term on the left hand side involves the cross product of E™™! and
By

)

— If By is space-dependent, we could not obtain a clean single mode equa-
tion through Fourier transformation. As in the Harris sheet equilib-
rium, By only depends on z, we could Fourier transform E"(x, vy, 2)
to E""Yx, k,, k.) and solve the latter by direct matrix inversion for
every k,, k, mode.
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3-D Shearless Slab Alfven waves

shear aflven wave compressional aflven wave
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Ion acoustic wave
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Whistler wave

e By neglecting ion current and electron inertia, the Ohm’s law yields

E:%(VX5B)XBQ.

e The numerical dispersion relation from a Von Neumann stability analysis
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Numerical dispersion relation
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Harris sheet equilibrium

e /cro-order B .
By(x) = By tanh(z) Y+ B¢ 2z

e The equilibrium distribution function is

3
r. (2nT,\ 2 m(v% + vl + (v, — Uds>2)
fos = 1y, sechz(z) ( - ) exp [— y2TS

N 21T, 3 mu?
exp [ —
" M P 21,

e Load particles as Maxwellian

e Weight equation
d 1 S
w; ¢ ( B <f ho T




Boundary conditions

e Perfect conducting wall boundary e Boundary condition for 0B is as-
condition is employed in  while pe- sumed in Faraday’s equation.
riodic boundary conditions in y and

z direction. y 4
Ey,zlx::tlx/Q =0
0B |y—t1,/2 =0 S RRGORSTERS [ELTISSRRRRREE E
e Numerically, the boundary condi- /ng/ By
tion for E can be treated as B =
E '+ E! - o g
Rl / |
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Resistive Tearing mode

Magnetic island 0.30 mode structure
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Tearing mode growth rate

e Linear Tearing mode theory shows that the growth rate is (scaled)
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The Lorentz ion/Drift kinetic electron model

Lorentz ions:

dVZ‘ q dXZ'

i BrvixB) a
Drift kinetic electrons: ¢ = %MGUZ
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Ampere’s equation

V x B = pny(J; — enc(Ve, + ueb))

V., :—E><b——b><VPLe
enB

1
J; —/fLVdV Uje = /fev dv, PLe:/feémeﬁdv
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e The Harris sheet equilibrium distribution function is a drifted Maxwellian
with a non-uniform density profile in x, which doesn’t meet the drift-kinetic
assumptions. If a strong guide field in z exists, the nonuniformity could
be treated as a perturbation, then the drift-kinetic equations is appliable in
this case.

e With drift-kinetic electrons, we could study the roles of kinetic electrons in
reconnection problem by making direct comparison with our fluid electron
model.

e Currently I am adding the drift-kinetic electrons into the code.



Including gyrokinetic electrons

e Gyrokinetic equations are usually derived in terms of A and ¢, to make explicit the ordering

0A
E ~ 65VJ_¢

e The Frieman-Chen gyrokinetic equation, assuming isotropy (0Fy/du = 0),

. 0
L95H0 = <— + UHb -V +Vp - V) 5HO - - (SL + <RNL>)7
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where 0H|) is related to the perturbed distribution oF' through oF = %qb% + 0H,
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e Define of = L (¢) % + 0Hy. The gyrokinetic equation for df is, written in terms of E;
and By

D o 1 <B]_J_> 1 6F0
E(Sf = (BO <E1> X b—l—UH BO ) VFO+ mE De

% = ig + (3% (E1) X b+ ”U|<BB—1OL>) -V, €=gq (U|b +vp + vl%) (Eq) +q (v, -E)



e The perturbed electron diamagnetic flow comes from of,
noVp(x) = /(vb + v, (R e, p,)0f (R, e, ) (x — R — p) JAR/ de dp dry
noV p is computed by depositing the particle current along the gyro-ring. In the drift-

kinetic limit V p reduces to the electron diamagnetic flow.

e The electron E x B flow comes from the first term in 0 F',

Fy
w0Vex) =2 [V (00x) = (6) (x = poe ) 50 T dedudy
 m Oe

in eikonal form,

h
n()VE = nogoéEk X b

with b = k?v%/Q* and
1 o0
— / =120 1 (0) J0 (D)2 da
0

In the limit of small kp < 1 the factor h(b) become unity, so that 7oV g become the total
guiding center Ex b flow.

h(b) =



Summary

. We implemented an implicit algorithm with Lorentz force ions and isother-
mal fluid electrons which is

e Quasi-neutral and fully electromagnetic.

e Suitable for MHD scale plasmas.

. Second order implicit scheme allows bigger time step, (3,At 2> 0.1.

e Compared the first order and second order scheme with Whistler waves

. Demonstrated 3-D slab simulation for compressional and shear Alfven waves,
Whistler wave, and the ion acoustic wave.

. With conducting wall boundary condition on x and periodic boundary con-
dition on y and z, the resistive tearing mode instability is investigated with
Harris sheet equilibrium.

. Working on nonlinear tearing mode saturation and drift-kinetic electrons.



